Refine Your Search

Topic

Author

Search Results

Journal Article

Calibrating a Real-time Energy Management for a Heavy-Duty Fuel Cell Electrified Truck towards Improved Hydrogen Economy

2022-06-14
2022-37-0014
Fuel cell electrified powertrains are currently a promising technology towards decarbonizing the heavy-duty transportation sector. In this context, extensive research is required to thoroughly assess the hydrogen economy potential of fuel cell heavy-duty electrification. This paper proposes a real-time capable energy management strategy (EMS) that can achieve improved hydrogen economy for a fuel cell electrified heavy-duty truck. The considered heavy-duty truck is modelled first in Simulink® environment. A baseline heuristic map-based controller is then retained that can instantaneously control the electrical power split between fuel cell system and the high-voltage battery pack of the heavy-duty truck. Particle swarm optimization (PSO) is consequently implemented to optimally tune the parameters of the considered EMS.
Journal Article

An Unsupervised Machine-Learning Technique for the Definition of a Rule-Based Control Strategy in a Complex HEV

2016-04-05
2016-01-1243
An unsupervised machine-learning technique, aimed at the identification of the optimal rule-based control strategy, has been developed for parallel hybrid electric vehicles that feature a torque-coupling (TC) device, a speed-coupling (SC) device or a dual-mode system, which is able to realize both actions. The approach is based on the preliminary identification of the optimal control strategy, which is carried out by means of a benchmark optimizer, based on the deterministic dynamic programming technique, for different driving scenarios. The optimization is carried out by selecting the optimal values of the control variables (i.e., transmission gear and power flow) in order to minimize fuel consumption, while taking into account several constraints in terms of NOx emissions, battery state of charge and battery life consumption.
Technical Paper

Application of Adjoint Methods on Drag Reduction of Current Production Cars

2018-05-30
2018-37-0016
Automotive manufacturers are facing stronger and stronger pressure to optimize all aspects related to fuel consumption of cars, and aerodynamic drag makes no exception, due to increasing government enforcing rules for the reduction of the emissions and the increasing influence of aerodynamic performance on fuel consumption with WLTC and RDE driving cycles. Nowadays, CFD simulation is a common tool across automotive industries for the assessment and the optimization of vehicle resistance in the design phase. The full power of these numerical methods of studying many design variants in advance of experimental testing, however, can be fully exploited when coupled with optimization techniques, always keeping into account constraints and aesthetical demands. On the other hand, a massive use of CFD optimization can lead to unaffordable computational efforts or a limitation of the design exploration space.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

A numerical Methodology for Induction Motor Control: Lookup Tables Generation and Steady-State Performance Analysis

2024-04-09
2024-01-2152
This paper presents a numerical methodology to generate lookup tables that provide d- and q-axis stator current references for the control of electric motors. The main novelty with respect to other literature references is the introduction of the iron power losses in the equivalent-circuit electric motor model implemented in the optimization routine. The lookup tables generation algorithm discretizes the motor operating domain and, given proper constraints on maximum stator current and magnetic flux, solves a numerical optimization problem for each possible operating point to determine the combination of d- and q- axis stator currents that minimizes the imposed objective function while generating the desired torque. To demonstrate the versatility of the proposed approach, two different variants of this numerical interpretation of the motor control problem are proposed: Maximum Torque Per Ampere and Minimum Electromagnetic Power Loss.
X